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Introduction

 MYNTS (MultiphYsal NeTwork Simulator), a system for physics-based 

simulation of energy transport networks, is enhanced by several concepts:

1. Generalized resistivity (GR):

 GR-conditions provide global convergence of respective solution 

algorithms, approaching a (then) existing and unique solution from an 

arbitrary starting point. 

 In previous papers, a theoretical foundation for GR was developed. 

 Modeling of gas compressors is especially complex. Here, an extension 

of GR to advanced compressors by means of unfolding is explained.

2. Hierarchical topological reduction:

 For large networks encountered in realistic cases, the newly developed 

algorithms allow to speed up the solution process significantly. 

 For benchmarking both features, a set of realistic test networks is used.
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Key Aspects of this Contribution



© Fraunhofer SCAI 

Example:

2-phase solution process

* Ref: T. Clees et al., Making Network Solvers Globally Convergent,

Advances in Intelligent Systems and Computing, Springer 2017.

Summary of GR and Exemplary Solver Workflow

 Stability of modeling is addressed by monotonicity of element equations, e.g., 

m(P1,P2) should increase w.r.t. P1, decrease w.r.t. P2 *

 Stability of the solver is additionally supported by special low level algorithms

(Armijo line search)

 IPOPT, as used by previous MYNTS versions as a solver, is replaced by an 

own SCAI Newton solver, containing these algorithms

 Call to the new kernel (Utrans*) invokes a Python workflow, describing a 

multiphase solution procedure (e.g., start with forced goals of compressors

and regulators; proceed with free compressors; then with advanced; iterate

mixing of temperature and gas properties,...)

*) For details on Utrans, 

see separate set of slides!
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Stable Modeling of Advanced Compressors
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resulting P2(P1,m) eqn (P1,m) projection, 

usually no problem

encountered

problems with monotonicity, 

happen rarely, require a local

modification of the diagram

powmax

region

revmax

region
surge

line

etamin linecontinuation2

continuation1

* Ref: T. Clees et al., Making Network Solvers Globally Convergent,

Advances in Intelligent Systems and Computing, Springer 2017.

Stable Modeling of Advanced Compressors

 Strategy: eliminate all intermediate variables (Had,Qvol,rev,Perf,eta,…); 

represent advanced compressor's equation in the basic form, e.g., P2(P1,m)

 Check monotonicity

 Use a monotone linear continuation outside of the working region *
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Stable Modeling of Advanced Compressors –

Results for Benchmark Suite

old: internal vars not eliminated, eqs partially unfolded

new: internal vars eliminated, eqs completely unfolded

100% convergence

achieved!
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Stable Modeling of Advanced Compressors –

Details

 A sequence of non-linear transformations:

(qvol,rev)→(had,eta,perf)→(rho1,had,m)→(P1,P2,m)

 step1: a usual 1D quadratic and 2D biquadratic models F(qvol,rev) *

 step2: temperature & gasmix independent models

m=perf/had eta, rho1=m/qvol

 step3: temperature & gasmix dependence

k=1.29; alp=(k-1)/k; gam=Rgas/mu T;

P1=EOSinv(rho1)  inverse equation of state rho=EOS(P), DC92/GERG

z1=P1/(gam*rho1)  universal gas law PV=m/mu RTz

P2=P1(Had alp/(gam z1)+1)^(1/alp)  Had definition resolved w.r.t. P2

(watch out for units: W/kW/MW, bar/Pa etc)

* Ref: T. Clees, I. Nikitin, L. Nikitina, “Advanced Modeling 

of Gas Compressors for Globally Convergent Stationary

Network Solvers”, in Proc. INFOCOMP 2017
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Stable Modeling of Advanced Compressors –

Details

 powmax region: restricted by revmin/revmax and

 qmin/etamin (aka surge line and choke line)

 revmin/revmax are consts, qmin1(rev) is given as 1D 

quadratic model, eta(qvolmax,rev)=etamin=const is solved

w.r.t. qvolmax(rev)

 qmin2(rev) is defined as argmax_q had(q,rev), 

qmin=max(qmin1,qmin2,0)

 region between revmin/revmax and qmin/etamin is

resampled to Nrev*Neta grid

 revmax region: rev=revmax side, in (rho1,m) projection

scaled to the origin

 cont1,2 regions go down/up in (rho1,m) projection

 the obtained 3D surface in (rho1,m,had) or (P1,P2,m) 

spaces is represented by triangulation resulting P2(P1,m) eqn

(P1,m) projection

powmax

region

revmax

region
surge

line

etamin linecontinuation2

continuation1
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Stable Modeling of Advanced Compressors –

Known Challenges (revmin Side)

 revmin side of powmax patch generally has a 

fold

 m is continued downwards from this line, due to

opening bypass regulator, circulating a part of

the flow

 this continuation creates the fold, producing

multiple solutions, degeneracy of Jacobi 

matrix…

 fortunately, for most of the cases, this region is

located beyond the physical domain of rho1 or

P1 and can be safely ignored

 for extra safety, rho1max value is defined, 

cutting off the fold, and the patch is restricted by

this value

(rho1,m) projection

powmax

region

surge

line

revmin

line
phys.

domain
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Stable Modeling of Advanced Compressors –

Extended Control equation in Translation Matrix

Pout

Q

Pin

OFF

PL
PH

QH

BP

model=free

model=advanced

continuation outside of working reg.

regularization
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Stable Modeling of Advanced Compressors –

Low Level Implementation

 triangulated surface P2(P1,m) represented as follows

 barycentric coordinates on a plane: 

m1*V1+m2*V2+m3*V3=(x,y), m1+m2+m3=1

 can be solved for m123(x,y) by linear formulas, 3 numbers

(c0,cx,cy) per m

 one formula can be spared using m3=1-m1-m2

 point belongs to triangle: m1,2,3>=0

 one more linear formula represents z-coord (P2)

 altogether 9 numbers (equivalent to 3 nodes x 3 coords)

 a function is implemented, searching for a triangle and

evaluating z-coord and its xy-derivatives

 linked to the solver using a mechanism of user-defined

functions

V1,m1

V

V2,m2
V3,m3
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Stable Modeling of Advanced Compressors –

Current Status of Development

 T-, K- & GEN-compressors and P-, E- and S-drives are implemented

 E-drives in the case of strongly increasing Mt(rev) replaced with const Mt

 S-drives implemented as const powmax drives

 procedure of conversion of compressors and drives chars to triangulated

surfaces is implemented as an external module in Mathematica

 produces triangle lists in MYNTS_TRIFILE, which can be used in UTrans

workflow

 modeling of temperature and gasmix implemented, by non-linear deformation

(warping) of precomputed diagrams

 a module for reconstruction of eliminated vars is developed (postprocessing of

solution)
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Stable Modeling of Advanced Compressors –

Example of Visualization
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Relaxed Armijo Rule

 standard Armijo rule works as stabilizing line search

algorithm for Newton iterations

 ensures that the residual of the system decreases

 theoretically (Kelley 1995) guarantees convergence

for ||J-1||<C

 we are solving nearly degenerate systems (due to

marginal signatures of c&r eqs)

 they correspond to nearly plateau behavior of the

residual

 small non-linear terms can strongly reduce the step, 

forcing Newton iterations to stagnate

 we have implemented a relaxed version of Armijo rule

res

lam

res

lam
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Relaxed Armijo Rule

 detects plateau situation by estimating of the lowest SVD eigenvalue:

 Jdx=-f, v=dx/|dx|, lam^2<=vT(JTJ)v=|f|^2/|dx|^2

 in plateau situation allow residual to increase not more than a given threshold

 significantly improves convergence of realistic examples (48/60→59/60)

 sometimes (rarely) causes Newton iteration to cycle

 usually those cases can be solved by switching relaxing off (59/60→60/60)

 further, if networks diverge, look at the behavior of residuals

 if almost converged, increase max_iter

 ls=100 – line search failed, a fold or other singularity met

 look at localization of residuals (the nearest c&r are printed out, residuals can be

visualized on the networks)

 try to change the local settings to remove the divergence

 (model→free, spo→sm, eliminate shortcircuits if any...)



© Fraunhofer SCAI 

Topological Reduction
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Topological Reduction Algorithms

(a)

(b)

(c) (d)

(e)

(f)

(g)

 series and parallel connections of generic

network elements can be reduced *

 in graph theory, the graphs reducible in this

way are called series-parallel graphs, 

SPGs

 additional reduction is an elimination of a 

leaf (a node of valency 1), for generalized

series-parallel graphs, GSPGs

 for transport networks all Qset leafs can be

eliminated in this way

 additional reduction is cleaning out 

„superconductive“ edges, such as

shortcuts, open valves, D=1m L=1m pipes, 

etc; and removing disconnected parts

possessing no Psets

Examples of GSPGs

* Ref: T. Clees et al., Modeling of Gas Compressors and Hierarchical

Reduction for Globally Convergent Stationary Network Solvers,

Int. J. On Advances in Systems and Measurements, 2018
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Topological Reduction Filter for Pipes –

Implementation

 reduces series, parallel and tree-like connections

(Generalized Series Parallel Graph, GSPG)

 implemented for quadratic pipes, generalization for

other friction laws is possible

P1 P2 P3
QR1 R2

R1

R2

P1
P2

Q1

Q2

R Q=0

P1   =  P2

series parallel

Ref: A. Baldin et al., Topological Reduction of Gas Transport 

Networks, in Proc. of INFOCOMP 2019
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Topological Reduction Filter for Pipes –

Implementation

 generalization for other friction laws

 Qset movement algorithm (level3)

where F,G

are monotonic

1D-functions

(represented by

linear interpolation

or splines, 

sampled by N 

points)
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Basic Benchmark Set network N1

nodes:edges:pipes
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Basic Benchmark Set –

Reduction Factors

 tested on realistic networks of different complexity

 reduction factors of 2.4 – 2.9 achieved (level1/level2)

Nodes:Edges:Pipes count for different reduction levels
level0 = original network

level1 = removing

disconnected parts and

superconductive elements

level2 = GSPG reduction

with fixed Qsets

level3 = GSPG reduction

with moving Qsets
implemented (estimation)
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Basic Benchmark Set –

Topological Results for Network N1

(estimation)

level0 = original 

network

(level1 = removing

disconnected parts

and superconductive

elements, not shown, 

looks similar to

level0)

level2 = GSPG 

reduction

with fixed Qsets

level3 = GSPG 

reduction

with moving Qsets
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Basic Benchmark Set –

Run Times and Speedup Factors

 tested on realistic networks of different complexity

 speedup factors of 2.2 – 2.6 achieved (level1/level2):

Run times (2.6GHz Intel i7 CPU)

level0 = original network

level1 = removing

disconnected parts and

superconductive elements

level2 = GSPG reduction

with fixed Qsets

level3 = GSPG reduction

with moving Qsets
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Exemplary Applications (1) –

A Large Set of Realistic Examples

 Plots for 146 networks of different complexity:

 Distribution of complexity (Nodes + Edges) 

at reduction level 1 (more appropriate for 

comparisons than level 0!) 

 Reduction factor between level 1 and 2. 

Shape of the histogram resembles Poisson 

distribution.

 Acceleration factor: deceleration up to 

strong acceleration. Mean important here 

(ensemble runs!). Outliers related to 

randomness of the solver path towards 

solution. Number of compressors 

influences run times significantly!
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Exemplary Applications (2) – partDE-Hy Demonstrator

 partDE-Hy* v.2 on Open Street Map (left) and in MYNTS (right)

*) See separate set of slides for more details!
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Exemplary Applications (2) – partDE-Hy (v.1)

Input:

437 nodes,

482 edges,

25 compressors

Timings [sec]

free2s 0.8

adv3s 1.5

mix-s 5.4

(timings for 2.6GHz

Intel i7 CPU)
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Topological Reduction Filter for Pipes –

Discussion

 Novel topological reduction method for gas transport networks developed

 The method uses a contraction of series, parallel and tree-like subgraphs, 

containing the pipes, described by quadratic friction law.

 Several realistic networks of different complexity have been used for

benchmarking of the method.

 Compared with original network, elimination of superconductive elements

and disconnected parts (level1) often results in reduction factor of around

2, further GSPG reduction with fixed Qsets (level2) multiplies this by ca. 

2, then GSPG reduction with moving Qsets (level3) gives an estimated

multiplicative factor of around 2.

 Measured speedup factor (level1  level2) often around 1.5-3.0.

 Method can be extended to other friction laws and elements.
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